Partitioning Peat Respiration in the Catotelm

J. Elizabeth Corbett, M. M. Tfaily, D. J. Burdige, W. T. Cooper, P. H. Glaser, and J. P. Chanton Earth, Ocean and Atmospheric Science Florida State University June 7, 2012

Introduction

- Peatland importance
 - Large carbon sinks with 1/3 of the total soil carbon
 - Recognizing high risk environments within peatlands
- Bogs vs. fens
 - pH, DOM characteristics, vegetation, water table
- Pathways
 - Fractionating: methanogenesis
 - Non-fractioning: oxic respiration, HMW organic matter degradation, other electron acceptors (sulfate, nitrate, iron)
- Oxygen and labile OM present in fens more than bogs due to plant roots
- Methane loss higher in fens than bogs

Radiocarbon Work

Incubations (Radiocarbon Results)

- Incubations done to examine DOC sources and quality differences from field samples
- Peats were rinsed (to remove any DOC already present) and place in incubation vials and made anaerobic
- Incubations were run for ~150 days and radiocarbon of the respiration products and DOC were analyzed and compared to samples of peat, DOC, and DIC taken in the field
- Differences in ∆¹⁴C values between pore water DOC and incubation DOC would suggest that:
 - Pore water DOC from certain depths in the field has other sources than just the peat at those depths
 - If the field pore water DOC is more modern than produced incubation DOC then some DOC in the field may be advected downward from more modern, surficial layers

Bog Incubations

Fen Incubations

Pore water CH₄ and CO₂ concentration and isotope data

Objectives and Assumptions

- Radiocarbon results show that fens have more labile DOC than bogs and in the field modern DOC is advected downwards
- Methanogenesis produces CH₄ and CO₂ at a 1:1 ratio
 - Non-fractionating pathways (HMW OM fermentation, sulfate reduction, oxic respiration) produce CO₂ only
 - CH₄ escape via plant roots and pore water due to low solubility
- Groundwater movement in GLAP is advection dominated
 - Advection discriminates less between light and heavier isotope species and diffusive fractionation is not taken into account in our model
- We want to find:
 - Fraction of CO₂ from fractionating (methanogenisis) and non-fractionating (HMW OM fermentation, other e⁻ acceptors, oxic respiration)
 - Amount of methane escaping from pore water either to atmosphere or to acrotelm

Carbon Pools in a peatland system

Isotope Mass Balance

•Assume 1:1 ratio of CO₂ and CH₄ production from methanogenesis (Barker 1936)

•The δ^{13} C of dissolved HMW OM (high molecular weight organic matter) was measured to be -26‰.

•If the δ^{13} C value of methane produced is -60‰, then the value of CO₂ produced, must by mass balance bear an isotopic value of +8‰

•CO₂ can also be produced from non-fractionating pathways

Isotope Mass Balance

Proportion of CO₂

Incubations (Mass Balance Results)

•The different data points represent peat vials from different depths. The fraction of CO_2 produced from methanogenesis (f CO_2 meth) was determined using either the isotope mass balance model (y-axis) or the concentrations of CH_4 and CO_2 .

•Dividing the concentration of CH_4 by the CO_2 in the vial yields the fraction of CO_2 produced from methanogensis from production measurements (x-axis).

•More CO_2 from meth in surficial peats, opposite from pore water depth trends

Amount of CO₂ from methanogenesis

•Graph A values are calculated using bulk pore water $\delta^{13}C$ -CO₂ values which includes pore water that has been advected downward so carries some surface $\delta^{13}C$ -CO₂ values

•Graph B values are calculated using calculated δ^{13} C-CO₂ from within depth intervals to remove any downward advected surficial δ^{13} C-CO₂

•In Carex-dominated fen, 40% of CO_2 comes from methanogenesis at surface depths and amounts increase to 75% with depth (~100 % within depth intervals)

•In Sphagnum-dominated bog, 60% of CO_2 comes from methanogenesis at surface depths and amounts increase to 90% at depths (~100% within depth intervals)

 $\bullet \delta^{13}C\text{-}CO_{2\text{-}added} = ((CO_{2\text{-}bottom} * \delta^{13}C\text{-}CO_{2\text{-}bottom}) - (CO_{2\text{-}top} * \delta^{13}C\text{-}CO_{2\text{-}top})) / CO_{2\text{-}added}$

• δ^{13} C-CO_{2-added and} ¹³C-CH_{4-added} applied to: (δ^{13} C-CO_{2-pw}) × (1) = (-26‰) × (1- fCO_{2-meth}) + (δ^{13} C-CO_{2-meth}) × (fCO_{2-meth}) _{meth})

Methane Escape

- Using the fraction of CO₂ formed from methanogenesis, we can determine the amount of methane that should be formed (1:1 ratio)
- $fCO_{2-meth} * CO_{2-conc} \in CO_{2-meth}$
- The CO₂ produced from methanogenesis should equal the CH₄ from methanogenesis, but we only measure about a 1/10 of the methane concentration that we expect

Produced methane - Measured methane = Fugitive methane

- Fugitive methane / Produced methane = Fraction lost
- Looking at the methane that should be formed and the methane that is present tells us the percent methane that is leaving our system

Amount of methane loss

Conclusions

- CO_2 sources in a peatland environment can be partitioned with the measured $\delta^{13}C$ - CO_2 of the pore water and the calculated $\delta^{13}C$ - CO_2 from methanogenesis
- Bogs showed a higher percentage of CO₂ generated from methanogenesis and a lower percentage of CO₂ from non-fractionating pathways compared to fens.
- In our system, additional CO₂ most likely from either oxic respiration, HMW OM fermentation, and/or sulfate reduction
- All additional, measured electron acceptors (Fe³⁺, NO_x, SO₄²⁻) were extremely low; however, low sulfate concentrations have still been shown to contribute to respiration (Keller and Bridgham 2007).
- Most respiration below 50 cm (catotelm) in both bog and fen was from methanogenesis, the upper 50 cm (acrotelm) is a more complex environment due to plant roots, mixed redox zones, more labile DOM. These difference were more pronounced in fens than bogs suggesting fens to be higher risk environments for changes in climate.
- Fens showed a higher percentage of CH₄ loss than bogs possibly due to the presence of long Carex roots.

Thank you!

- Jeffrey P. Chanton, William T. Cooper, Malak M. Tfaily Department of Earth, Ocean, and Atmospheric Sciences and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (chanton@ocean.fsu.edu, cooper@chem.fsu.edu, mmt07d@fsu.edu)
- David Burdige
 Dept. of Ocean, Earth and Atmospheric Sciences,Old Dominion University, Norfolk, VA 23529 (<u>dburdige@odu.edu</u>)
- Paul H. Glaser
 Department of Geology & Geophysics, Pillsbury Hall University of Minnesota, Minneapolis, MN 55455 (glase001@umn.edu)
- Donald I. Siegel, Soumitri S. Dasgupta Department of Earth Science, Syracuse University, Syracuse, NY 13244-1070 USA (disiegel@syr.edu, mimi.sarkar@gmail.com)